

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Metal Controlled Anion Binding Tendencies of the Thiourea Unit of Thiosemicarbazones

Valeria Amendola,^[a] Massimo Boiocchi,^[b] Luigi Fabbrizzi,^{*[a]} and Lorenzo Mosca^[a]

^[a] Dr. Valeria Amendola, Prof. Luigi Fabbrizzi, Dr. Lorenzo Mosca Dipartimento di Chimica Generale Università di Pavia via Taramelli 12, 27100 Pavia, Italy

> ^[b] Dr. Massimo Boiocchi Centro Grandi Strumenti Università di Pavia via Bassi, 27100 Pavia, Italy

SUPPORTING INFORMATION

Information on crystallographic data: CCDC 685928 and 685929 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or e-mail: <u>deposit@ccdc.cam.ac.uk</u>).

Figure S1. Bifurcate hydrogen bonding interactions between triflate ions and the thiourea subunits of the crystalline complex salt $[Fe^{II}(3)_2](CF_3SO_3)_2 \cdot H_2O$. The water molecule has been omitted in the Figure.

Figure S2. Bifurcate hydrogen bonding interactions between triflate ions and the thiourea subunits of the crystalline complex salt $[Ni^{II}(3)_2](CF_3SO_3)_2$ ·MeCN. The MeCNr molecule has been omitted in the Figure.

Figure S3. Colours of CHCl₃ solution 5×10^{-5} M of $[Fe^{II}(LH)_2]^{2+}$ complex after the addition of 0, 1, 2 equiv. of Proton Sponge®, **13** (from left); LH = **3**.

Figure S5. Spectra obtained over the course of the titration of a 1.01×10^{-4} M solution of $[Fe^{II}(3)_2]^{2+}$ in CHCl₃ with a solution of $[Bu_4N]NO_2$ in CHCl₃ (LH = **3**).

Figure S6. (a) Spectra obtained over the course of the titration of a 1.06×10^{-4} M solution of $[Fe^{II}(3)_2]^{2+}$ in CHCl₃ with a solution $1.58 \times 10-2$ M $[Bu_4N]F \cdot 3H_2O$ in CHCl₃ (LH = 3); (b) titration profile on the lower energy MLCT band, corresponding to the $[Fe^{II}(LH)(L)]^+$ species; (c) titration profile on the lower energy MLCT band, corresponding to the $[Fe^{II}(L)_2]$ species.

Figure S7. Colours of a CHCl₃ solution 5×10^{-5} M of $[Ni^{II}(LH)_2]^{2+}$ complex before (left) and after (right) the addition 2 equiv. of Proton Sponge®; LH = **3**.

Figure S8. (a) spectra obtained over the course of the titration of a 1.22×10^{-4} M solution of $[Ni^{II}(LH)_2]^{2+}$ in CHCl₃ with a solution 1.20×10^{-2} M of $[Bu_4N]CH_3COO$ in CHCl₃ (LH = **3**); inset: titration profile at 376 nm.

	$[\mathrm{Fe}^{\mathrm{II}}(3)_2](\mathrm{CF}_3\mathrm{SO}_3)_2\cdot\mathrm{H}_2\mathrm{O}$	$[Ni^{II}(3)_2](CF_3SO_3)_2$ ·MeCN	δ
Me-N(1)	1.896(21)	2.005(3) 0.11	0.11
Me-N(2)	1.971(22)	2.105(3) 0.14	0.14
Me–N(5)	1.878(19)	2.007(2) 0.13	0.13
Me-N(6)	1.974(21)	2.119(3) 0.15	0.15
Me–S(1)	2.283(8)	2.402(1) 0.12	0.12
Me–S(2)	2.301(7)	2.431(1) 0.13	0.13
N(1)-Me-N(2)	80.6(10)	78.1(1)	
N(1)-Me-N(6)	97.7(9)	97.2(1)	
N(1)-Me-S(1)	84.8(8)	82.3(1)	
N(1)-Me-S(2)	96.8(7)	102.9(1)	
N(2)-Me-N(5)	97.4(9)	99.2(1)	
N(2)-Me-N(6)	90.0(9)	89.2(1)	
N(2)-Me-S(2)	91.1(6)	91.7(1)	
N(5)-Me-N(6)	80.7(9)	78.3(1)	
N(5)-Me-S(1)	97.2(6)	100.2(1)	
N(5)-Me-S(2)	84.8(6)	81.5(1)	
N(6)-Me-S(1)	90.6(7)	92.3(1)	
S(1)-Me-S(2)	91.9(3)	93.7(1)	

Table S1. Selected bond lengths (Å) and bond angles (°) around the metal center (Me) in the Fe^{II} and Ni^{II} molecular complexes of **3**. δ is the difference of corresponding bond distances in the Ni^{II} and Fe^{II} complexes.